IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-71175-7_6.html
   My bibliography  Save this book chapter

Geographically Weighted Regression Analysis for Two-Factorial Compositional Data

In: Advances in Compositional Data Analysis

Author

Listed:
  • Kamila Fačevicová

    (Palacký University Olomouc, Department of Mathematical Analysis and Applications of Mathematics)

  • Petra Kynčlová

    (United Nation Industrial Development Organization (UNIDO), Statistics Division)

  • Karel Macků

    (Palacký University Olomouc, Department of Geoinformatics)

Abstract

The chapter focuses on the modelling and analysis of spatial dependent two-factorial compositional data. Spatial statistics provides a wide range of methods for the analysis of data with local variations but only a few of them are accommodated for the purposes of modelling relative structures. In this chapter, the geographically weighted regression model is introduced to analyse the relationship between the dependent variable and an explanatory variable reflecting a structure expressed in terms of a compositional table. The methodology is motivated by the problem of modelling local variations of the relationship between at-risk-of-poverty rates and the structure of the highest attained educational level in the German population aged 30–34. The real data study shows how information included in a compositional table and further expressed in real-valued coordinates can be highly valuable in selecting variables and prioritising them with respect to a research interest to facilitate the final interpretation of the model.

Suggested Citation

  • Kamila Fačevicová & Petra Kynčlová & Karel Macků, 2021. "Geographically Weighted Regression Analysis for Two-Factorial Compositional Data," Springer Books, in: Peter Filzmoser & Karel Hron & Josep Antoni Martín-Fernández & Javier Palarea-Albaladejo (ed.), Advances in Compositional Data Analysis, pages 103-124, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-71175-7_6
    DOI: 10.1007/978-3-030-71175-7_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-71175-7_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.