IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-71175-7_2.html
   My bibliography  Save this book chapter

The Information-Geometric Perspective of Compositional Data Analysis

In: Advances in Compositional Data Analysis

Author

Listed:
  • Ionas Erb

    (The Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG))

  • Nihat Ay

    (Max-Planck Institute for Mathematics in the Sciences
    Leipzig University, Department of Mathematics and Computer Science
    Santa Fe Institute)

Abstract

Information geometry uses the formal tools of differential geometry to describe the space of probability distributions as a Riemannian manifold with an additional dual structure. The formal equivalence of compositional data with discrete probability distributions makes it possible to apply the same description to the sample space of Compositional Data Analysis (CoDA). The latter has been formally described as a Euclidean space with an orthonormal basis featuring components that are suitable combinations of the original parts. In contrast to the Euclidean metric, the information-geometric description singles out the Fisher information metric as the only one keeping the manifold’s geometric structure invariant under equivalent representations of the underlying random variables. Well-known concepts that are valid in Euclidean coordinates, e.g., the Pythagorean theorem, are generalized by information geometry to corresponding notions that hold for more general coordinates. In briefly reviewing Euclidean CoDA and, in more detail, the information-geometric approach, we show how the latter justifies the use of distance measures and divergences that so far have received little attention in CoDA as they do not fit the Euclidean geometry favored by current thinking. We also show how Shannon entropy and relative entropy can describe amalgamations in a simple way, while Aitchison distance requires the use of geometric means to obtain more succinct relationships. We proceed to prove the information monotonicity property for Aitchison distance. We close with some thoughts about new directions in CoDA where the rich structure that is provided by information geometry could be exploited.

Suggested Citation

  • Ionas Erb & Nihat Ay, 2021. "The Information-Geometric Perspective of Compositional Data Analysis," Springer Books, in: Peter Filzmoser & Karel Hron & Josep Antoni Martín-Fernández & Javier Palarea-Albaladejo (ed.), Advances in Compositional Data Analysis, pages 21-43, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-71175-7_2
    DOI: 10.1007/978-3-030-71175-7_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-71175-7_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.