IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-68817-2_5.html
   My bibliography  Save this book chapter

Graph and Heterogeneous Network Transformations

In: Representation Learning

Author

Listed:
  • Nada Lavrač

    (Jožef Stefan Institute, Department of Knowledge Technologies
    University of Nova Gorica, School of Engineering and Management)

  • Vid Podpečan

    (Jožef Stefan Institute, Department of Knowledge Technologies)

  • Marko Robnik-Šikonja

    (University of Ljubljana, Faculty of Computer and Information Science)

Abstract

This chapter presents the key ideas related to embedding simple (homogeneous) and more elaborate (heterogeneous) graphs. It first outlines some of the key approaches for constructing embeddings based exclusively on graph topology. We then discuss recent advances that include feature information into the constructed graph embeddings. We also address data transformation methods applicable to graphs with different types of nodes and edges, referred to as heterogeneous graphs or heterogeneous information networks. The chapter is structured as follows. Section 5.1 presents approaches to embedding simple homogeneous graphs, starting with the popular DeepWalk and node2vec methods, followed by a selection of other random walk based graph embedding methods. Section 5.2 introduces heterogeneous information networks, containing nodes of different types, the most useful tasks applied to such networks, and selected approaches to embedding heterogeneous information networks. We present a method for propositionalizing text enriched heterogeneous information networks and a method for heterogeneous network decomposition in Sect. 5.3. Ontology transformations for semantic data mining are presented in Sect. 5.4. Selected techniques for embedding knowledge graphs are presented in Sect. 5.5. The chapter concludes by presenting selected methods implemented in Jupyter Python notebooks in Sect. 5.6.

Suggested Citation

  • Nada Lavrač & Vid Podpečan & Marko Robnik-Šikonja, 2021. "Graph and Heterogeneous Network Transformations," Springer Books, in: Representation Learning, chapter 0, pages 107-142, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-68817-2_5
    DOI: 10.1007/978-3-030-68817-2_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-68817-2_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.