Author
Listed:
- Timo Schäfer
(Johannes Gutenberg University, Institut für Physik)
- Christian Muhl
(Johannes Gutenberg University, Institut für Organische Chemie)
- Matthias Barz
(Johannes Gutenberg University, Institut für Organische Chemie)
- Friederike Schmid
(Johannes Gutenberg University, Institut für Physik)
- Giovanni Settanni
(Johannes Gutenberg University, Institut für Physik)
Abstract
Hydrophilic polymers are being investigated as possible coating agents for therapeutic nanoparticles because of their capacity to reduce immune response and increase circulation life time. The mechanism of action of these coatings is not well understood although it is clear that they unspecifically reduce the amount of proteins adsorbing on the nanoparticle surface coming in contact with biological fluids. Here we have investigated, using state-of-the-art atomistic molecular dynamics simulations, the equilibrium and kinetic properties of the interactions forming between human serum albumin, the most abundant protein in the blood stream, and two different and promising polymers poly(ethylene glycol) and poly-sarcosine and we have compared the results with a polymer which is an isomer of poly-sarcosine but has a totally different behavior in terms of adsorption, poly-alanine, because of its well-known aggregation propensity. The results show how the two hydrophilic polymers have a very similar behavior in terms of the amount of polymers adsorbed on the protein surface, pattern of interactions and the kinetics of the adsorption process, with differences emerging due to the different flexibility of the two molecules. In contrast poly-alanine adsorbs significantly more strongly on the protein surface, with a slower kinetics, and a quantitatively, but not qualitatively, different interaction pattern with the surface amino acids with respect to the hydrophilic polymers.
Suggested Citation
Timo Schäfer & Christian Muhl & Matthias Barz & Friederike Schmid & Giovanni Settanni, 2021.
"Thermodynamics and Kinetics of the Interactions Between Proteins and Hydrophilic Polymers,"
Springer Books, in: Wolfgang E. Nagel & Dietmar H. Kröner & Michael M. Resch (ed.), High Performance Computing in Science and Engineering '19, pages 65-76,
Springer.
Handle:
RePEc:spr:sprchp:978-3-030-66792-4_4
DOI: 10.1007/978-3-030-66792-4_4
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-66792-4_4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.