IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-66792-4_18.html
   My bibliography  Save this book chapter

Direct Numerical Simulation of Supersonic Film Cooling by Tangential Blowing

In: High Performance Computing in Science and Engineering '19

Author

Listed:
  • Johannes M. F. Peter

    (University of Stuttgart, Institute of Aerodynamics and Gas Dynamics)

  • Markus J. Kloker

    (University of Stuttgart, Institute of Aerodynamics and Gas Dynamics)

Abstract

Film cooling is an effective method to thermally protect the nozzle extension of rocket engines from the hot exhaust gases. A cool secondary gas is blown into the supersonic hot-gas turbulent boundary layer through a backward-facing step to generate a cooling film that reduces the heat load of the structure. In this work the complex interaction between the hot supersonic main-flow and the coolant stream is investigated using high-order direct numerical simulations (DNS) to gain fundamental understanding of the mixing physics. The cooling gas is injected at a Mach number of 1.8 into the turbulent Mach-3.3 flat-plate boundary-layer at zero pressure gradient. The main gas is steam (gaseous H2O), the cooling gas is helium, and adiabatic wall conditions are used. Results for various blowing ratios F at kept cooling-gas temperature and Mach number are presented. The interaction of the main stream turbulence and the initially laminar cooling film is investigated in detail as well as the evolution of the cooling effectiveness. The common Goldstein correlation formula for the effectiveness is applied, but no satisfying scaling is achieved.

Suggested Citation

  • Johannes M. F. Peter & Markus J. Kloker, 2021. "Direct Numerical Simulation of Supersonic Film Cooling by Tangential Blowing," Springer Books, in: Wolfgang E. Nagel & Dietmar H. Kröner & Michael M. Resch (ed.), High Performance Computing in Science and Engineering '19, pages 263-278, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-66792-4_18
    DOI: 10.1007/978-3-030-66792-4_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-66792-4_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.