IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-59144-1_25.html
   My bibliography  Save this book chapter

RET of Dense Polyatomic Gas with Seven Fields

In: Classical and Relativistic Rational Extended Thermodynamics of Gases

Author

Listed:
  • Tommaso Ruggeri

    (University of Bologna, Department of Mathematics and Research Center on Applied Mathematics)

  • Masaru Sugiyama

    (Nagoya Institute of Technology)

Abstract

In this chapter, we study a RET theory of dense polyatomic gases taking into account the experimental evidence that the relaxation times of molecular rotation and that of molecular vibration are quite different from each other. For simplicity, as in Chap. 24 , we focus on the bulk viscosity but ignore the shear viscosity and the heat conductivity. The present theory includes the previous RET theory of dense gases with six fields as a principal subsystem, and it also includes the RET theory of rarefied polyatomic gases with seven fields (ET7 in Chap. 14 ) in the rarefied-gas limit. The closure is carried out by using the universal principles. In addition, the duality principle connecting rarefied gas to dense gas is adopted. A discussion is devoted to the expression of the production terms in the system of balance equations. As typical examples, we study a gas with virial equations of state and a van der Waals gas. Lastly the dispersion relation of a linear harmonic wave is derived, and its comparison with experimental data is made briefly.

Suggested Citation

  • Tommaso Ruggeri & Masaru Sugiyama, 2021. "RET of Dense Polyatomic Gas with Seven Fields," Springer Books, in: Classical and Relativistic Rational Extended Thermodynamics of Gases, chapter 0, pages 489-514, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-59144-1_25
    DOI: 10.1007/978-3-030-59144-1_25
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-59144-1_25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.