IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-59144-1_16.html
   My bibliography  Save this book chapter

Linear Sound Wave in a Rarefied Polyatomic Gas

In: Classical and Relativistic Rational Extended Thermodynamics of Gases

Author

Listed:
  • Tommaso Ruggeri

    (University of Bologna, Department of Mathematics and Research Center on Applied Mathematics)

  • Masaru Sugiyama

    (Nagoya Institute of Technology)

Abstract

In this chapter, we study a linear sound wave in a rarefied polyatomic gas in equilibrium. Thereby we can clarify the validity and the features of the ET14 and ET15 theories established in Chaps. 6 – 8 . In the first half of this chapter, we derive the dispersion relations on the basis of the ET14 theory and of the classical Navier-Stokes and Fourier (NSF) theory. Comparison of these relations with experimental data reveals clearly the superiority of the ET14 theory to the NSF theory. We confine our analysis within sound waves in some rarefied diatomic gases (hydrogen, deuterium, and hydrogen deuteride gases) because suitable experimental data are scarce. We also evaluate the relaxation times, and the shear and bulk viscosities, and the heat conductivity of the gases. In the second half, firstly we emphasize the necessity of the ET15 theory. Then using this theory we study the dispersion relation of a rarefied polyatomic gas with molecular rotational- and vibrational-relaxation processes. We study, in particular, its temperature dependence in the cases where the rotational and vibrational modes may or may not be excited. It is shown that the curve of the attenuation per wavelength with respect to the frequency has up to three peaks depending on the temperature and on the relaxation times. The peak in a low frequency region is studied especially in detail because its experimental measurement is relatively easy.

Suggested Citation

  • Tommaso Ruggeri & Masaru Sugiyama, 2021. "Linear Sound Wave in a Rarefied Polyatomic Gas," Springer Books, in: Classical and Relativistic Rational Extended Thermodynamics of Gases, chapter 0, pages 361-387, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-59144-1_16
    DOI: 10.1007/978-3-030-59144-1_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-59144-1_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.