IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-57784-1_6.html
   My bibliography  Save this book chapter

Sequential Subspace Optimization for Recovering Stored Energy Functions in Hyperelastic Materials from Time-Dependent Data

In: Time-dependent Problems in Imaging and Parameter Identification

Author

Listed:
  • Rebecca Klein

    (Saarland University, Department of Mathematics)

  • Thomas Schuster

    (Saarland University, Department of Mathematics)

  • Anne Wald

    (Saarland University, Department of Mathematics)

Abstract

Monitoring structures of elastic materials for defect detection by means of ultrasound waves (Structural Health Monitoring, SHM) demands for an efficient computation of parameters which characterize their mechanical behavior. Hyperelasticity describes a nonlinear elastic behavior where the second Piola-Kirchhoff stress tensor is given as a derivative of a scalar function representing the stored (strain) energy. Since the stored energy encodes all mechanical properties of the underlying material, the inverse problem of computing this energy from measurements of the displacement field is very important regarding SHM. The mathematical model is represented by a high-dimensional parameter identification problem for a nonlinear, hyperbolic system with given initial and boundary values. Iterative methods for solving this problem, such as the Landweber iteration, are very time-consuming. The reason is the fact that such methods demand for several numerical solutions of the hyperbolic system in each iteration step. In this contribution we present an iterative method based on sequential subspace optimization (SESOP) which in general uses more than only one search direction per iteration and explicitly determines the step size. This leads to a significant acceleration compared to the Landweber method, even with only one search direction and an optimized step size. This is demonstrated by means of several numerical tests.

Suggested Citation

  • Rebecca Klein & Thomas Schuster & Anne Wald, 2021. "Sequential Subspace Optimization for Recovering Stored Energy Functions in Hyperelastic Materials from Time-Dependent Data," Springer Books, in: Barbara Kaltenbacher & Thomas Schuster & Anne Wald (ed.), Time-dependent Problems in Imaging and Parameter Identification, pages 165-190, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-57784-1_6
    DOI: 10.1007/978-3-030-57784-1_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-57784-1_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.