Author
Listed:
- Frédéric Klopp
(CNRS, Institut de Mathématiques de Jussieu - Paris Rive Gauche, Sorbonne Université, Université Paris Diderot)
- Nikolaj A. Veniaminov
(Université Paris IX Dauphine, CEREMADE, UMR CNRS 7534)
Abstract
The present paper is devoted to the study of a simple model of interacting electrons in a random background. In a large interval Λ, we consider n one-dimensional particles whose evolution is driven by the Luttinger-Sy model, i.e., the interval Λ is split into pieces delimited by the points of a Poisson process of intensity μ and, in each piece, the Hamiltonian is the Dirichlet Laplacian. The particles interact through a repulsive pair potential decaying polynomially fast at infinity. We assume that the particles have a positive density, i.e., n∕| Λ|→ ρ > 0 as | Λ|→ +∞. In the low density or large disorder regime, i.e., ρ∕μ small, we obtain a two-term asymptotic for the thermodynamic limit of the ground state energy per particle of the interacting system; the first order correction term to the non- interacting ground state energy per particle is controlled by pairs of particles living in the same piece. The ground state is described in terms of its one- and two-particle reduced density matrix. Comparing the interacting and the non-interacting ground states, one sees that the effect of the repulsive interactions is to move a certain number of particles living together with another particle in a single piece to a new piece that was free of particles in the non-interacting ground state. Résumé Dans ce travail, nous considérons un modèle simple d’électrons en interaction dans un environnement aléatoire. Dans un grand intervalle Λ, nous considérons n particules uni-dimensionnelles dont l’évolution est régie par le modèle de Luttinger-Sy : l’intervalle Λ est subdivisé en pièces délimitées par les points d’un processus de Poisson d’intensité μ et, dans chaque pièce, le hamiltonien est le laplacien de Dirichlet. Les particules interagissent par paires au travers d’un potentiel répulsif décroissant polynomialement à l’infini. On suppose que la densité de particules est positive c’est-à-dire que n∕| Λ|→ ρ > 0 quand | Λ|→ +∞. Lorsque la densité est petite ou lorsque le désordre est grand, c’est-à-dire lorsque ρ∕μ est petit, nous obtenons une asymptotique à deux termes de la limite thermodynamique de l’énergie fondamentale par particule du système; le premier terme de correction à l’énergie fondamentale par particule du système sans interaction est contrôlé par les paires de particules vivant dans la même pièce. L’état fondamental est décrit au moyen de sa matrice de densité réduite à une et à deux particules. En comparant l’état fondamental avec interaction à l’état fondamental sans interaction, on voit que l’effet des interactions est de séparer un certain nombre de particules qui vivent en paire avec une autre particule dans la même pièce vers des pièces inoccupées dans l’état fondamental sans interaction.
Suggested Citation
Frédéric Klopp & Nikolaj A. Veniaminov, 2020.
"Interacting Electrons in a Random Medium: A Simple One-Dimensional Model,"
Springer Books, in: Nalini Anantharaman & Ashkan Nikeghbali & Michael Th. Rassias (ed.), Frontiers in Analysis and Probability, pages 91-242,
Springer.
Handle:
RePEc:spr:sprchp:978-3-030-56409-4_5
DOI: 10.1007/978-3-030-56409-4_5
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-56409-4_5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.