IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-55462-0_5.html
   My bibliography  Save this book chapter

Spatial Data Reduction Through Element-of-Interest (EOI) Extraction

In: Handbook of Big Geospatial Data

Author

Listed:
  • Samantha T. Arundel

    (Center of Excellence for Geospatial Information Science, U.S. Geological Survey)

  • E. Lynn Usery

    (Center of Excellence for Geospatial Information Science, U.S. Geological Survey)

Abstract

Any large, multifaceted data collection that is challenging to handle with traditional management practices can be branded ‘Big Data.’ Any big data containing geo-referenced attributes can be considered big geospatial data. The increased proliferation of big geospatial data is currently reforming the geospatial industry into a data-driven enterprise. Challenges in the big spatial data domain can be summarized as the ‘Big Vs’ – variety, volume, velocity, veracity and value. Big spatial data sources can be considered in two broad classes, active and passive, as each is impacted to varying degrees. Some of these challenges may be alleviated by reducing unprocessed, or minimally processed, (raw) data to features, which we refer to as the extraction of Elements of Interest (EOI). In fact, many applications require EOI extraction from raw data to enable their basic employment. This chapter presents current state-of-the-art methods to create EOI from some types of georeferenced big data. We classify the data types into two realms: active and passive. Active data are those collected specifically for the purpose to which they are applied. Passive data are those collected for purposes other than those for which they are utilized, included those ‘collected’ for no particular purpose at all. The chapter then presents use cases from both the active and passive spatial realms, including the active applications of terrain feature extraction from digital elevation models and vegetation mapping from remotely-sensed imagery and passive applications like building identification from VGI and point-of-interest data mining from social networks for land use classification. Finally, the chapter concludes with future research needs.

Suggested Citation

  • Samantha T. Arundel & E. Lynn Usery, 2021. "Spatial Data Reduction Through Element-of-Interest (EOI) Extraction," Springer Books, in: Martin Werner & Yao-Yi Chiang (ed.), Handbook of Big Geospatial Data, chapter 0, pages 119-134, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-55462-0_5
    DOI: 10.1007/978-3-030-55462-0_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-55462-0_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.