IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-54560-4_4.html
   My bibliography  Save this book chapter

Forest Fires: Fire Management and the Power Law

In: Resilience and Stability of Ecological and Social Systems

Author

Listed:
  • István Karsai

    (East Tennessee State University, Department of Biological Sciences)

  • Thomas Schmickl

    (Karl-Franzens-Universitat, Department of Zoology)

  • George Kampis

    (Eotvos University Budapest)

Abstract

Forest fires do not only destroy plants, animals, and structures, but also change the ecology of the habitat. While research of fire dynamics is a hot topic, there are many controversial issues in the field. Forest fires are commonly considered best examples for a scale-free, power-law distribution. We developed a model of a simple ecosystem that questions this and other well-established understandings. We show that in fact forest fires are not scale-free, power-law phenomena, but are generated by different processes. Our model also shows that trees and tree-dependent animals are affected by the fires differently. In prescribed fires, the forest will burn locally with smaller fires and this will not allow for a high accumulation of fuel in the forest. While trees tend to survive or re-grow, forest animals will easily go extinct. Without prescribed fires, more fuel will accumulate, which leads to an occasional single massive fire, where a large percentage of the forest will be destroyed, but the animal population is able to rebound and spread back from unburned patches. Our model provides a clear prediction that forest animals could be endangered by prescribed fire managements.

Suggested Citation

  • István Karsai & Thomas Schmickl & George Kampis, 2020. "Forest Fires: Fire Management and the Power Law," Springer Books, in: Resilience and Stability of Ecological and Social Systems, chapter 0, pages 63-77, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-54560-4_4
    DOI: 10.1007/978-3-030-54560-4_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-54560-4_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.