Author
Abstract
We consider a reduced complex surface germ (X, p). We do not assume that X is normal at p, and so, the singular locus ( Σ, p) of (X, p) could be one dimensional. This text is devoted to the description of the topology of (X, p). By the conic structure theorem (see Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematical Studies 61 (1968), Princeton Univ. Press), (X, p) is homeomorphic to the cone on its link L X. First of all, for any good resolution ρ : (Y, E Y) → (X, 0) of (X, p), there exists a factorization through the normalization ν : ( X ̄ , p ̄ ) → ( X , 0 ) $$\nu : (\bar X,\bar p) \to (X,0 )$$ (see H. Laufer, Normal two dimensional singularities, Ann. of Math. Studies 71, (1971), Princeton Univ. Press., Thm. 3.14). This is why we proceed in two steps. 1. When (X, p) a normal germ of surface, p is an isolated singular point and the link L X of (X, p) is a well defined differentiable three-manifold. Using the good minimal resolution of (X, p), L X is given as the boundary of a well defined plumbing (see Sect. 2.2) which has a negative definite intersection form (see Hirzebruch et al., Differentiable manifolds and quadratic forms, Math. Lecture Notes, vol 4 (1972), Dekker, New-York and Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), p. 299–344). 2. In Sect. 2.3, we use a suitably general morphism, π : ( X , p ) → ( ℂ 2 , 0 ) $$\pi : (X,p) \to (\mathbb {C} ^2, 0)$$ , to describe the topology of a surface germ (X, p) which has a 1-dimensional singular locus ( Σ, p). We give a detailed description of the quotient morphism induced by the normalization ν on the link L X ̄ $$L_{\bar X}$$ of ( X ̄ , p ̄ ) $$ (\bar X, \bar p)$$ (see also Sect. 2.2 in Luengo-Pichon, Lê ‘s conjecture for cyclic covers, Séminaires et congrès 10, (2005), p. 163–190. Publications de la SMF, Ed. J.-P. Brasselet and T. Suwa). In Sect. 2.4, we give a detailed proof of the existence of a good resolution of a normal surface germ by the Hirzebruch-Jung method (Theorem 2.4.6). With this method a good resolution is obtained via an embedded resolution of the discriminant of π (see Friedrich Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953) p. 1–22). An example is given Sect. 2.6. An appendix (Sect. 2.5) is devoted to the topological study of lens spaces and to the description of the minimal resolution of quasi-ordinary singularities of surfaces. Section 2.5 provides the necessary background material to make the proof of Theorem 2.4.6 self-contained.
Suggested Citation
Françoise Michel, 2020.
"The Topology of Surface Singularities,"
Springer Books, in: José Luis Cisneros Molina & Dũng Tráng Lê & José Seade (ed.), Handbook of Geometry and Topology of Singularities I, chapter 0, pages 151-182,
Springer.
Handle:
RePEc:spr:sprchp:978-3-030-53061-7_2
DOI: 10.1007/978-3-030-53061-7_2
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-53061-7_2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.