IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-52063-2_16.html
   My bibliography  Save this book chapter

Inference for Variance–Covariance Parameters

In: Linear Model Theory

Author

Listed:
  • Dale L. Zimmerman

    (University of Iowa, Department of Statistics and Actuarial Science)

Abstract

In Chaps. 11 and 13 , we obtained BLUEs for estimable linear functions under the Aitken model and BLUPs for predictable linear functions under the prediction-extended Aitken model, and we noted that this methodology could be used to estimate estimable linear functions or predict predictable linear functions of β, b, and d in the mixed (and random) effects model, or more generally to estimate estimable and predict predictable linear functions in a general mixed linear model, provided that the variance–covariance parameters ψ (in the case of a mixed effects model) or θ (in the case of a general mixed model) are known. Moreover, it was also noted at the ends of both chapters that the customary procedure for performing these inferences when the variance–covariance parameters are unknown is to first estimate those parameters from the data and then use BLUE/BLUP formulas with the estimates substituted for the unknown true values. It is natural, then, to ask how the variance–covariance parameters should be estimated. Answering this question is the topic of this chapter. We begin with an answer that applies when the model is a components-of-variance model, for which a method known as quadratic unbiased estimation can be used to estimate the variance–covariance parameters, which are variance components in that case. Then we give an answer, based on likelihood-based estimation, that applies to any general mixed linear model.

Suggested Citation

  • Dale L. Zimmerman, 2020. "Inference for Variance–Covariance Parameters," Springer Books, in: Linear Model Theory, chapter 16, pages 451-486, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-52063-2_16
    DOI: 10.1007/978-3-030-52063-2_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-52063-2_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.