IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-49720-0_7.html
   My bibliography  Save this book chapter

Identifying Drivers of Outcomes: Linear Models

In: Python for Marketing Research and Analytics

Author

Listed:
  • Jason S. Schwarz

    (Google)

  • Chris Chapman

    (Google)

  • Elea McDonnell Feit

    (Drexel University)

Abstract

In this chapter we investigate linear models, which are often used in marketing to explore the relationship between an outcome of interest and other variables. A common application in survey analysis is to model satisfaction with a product in relation to specific elements of the product and its delivery; this is called “satisfaction drivers analysis.” Linear models are also used to understand how price and advertising are related to sales, and this is called “marketing mix modeling.” There are many other situations in which it is helpful to model an outcome, known formally as a response or dependent variable, as a function of predictor variables, known as explanatory or independent variables. Once a relationship is estimated, one can use the model to make predictions of the outcome for other values of the predictors. For example, in a course, we might find that final exam scores can be predicted based on the midterm exam score.

Suggested Citation

  • Jason S. Schwarz & Chris Chapman & Elea McDonnell Feit, 2020. "Identifying Drivers of Outcomes: Linear Models," Springer Books, in: Python for Marketing Research and Analytics, chapter 0, pages 137-165, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-49720-0_7
    DOI: 10.1007/978-3-030-49720-0_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-49720-0_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.