IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-44718-2_6.html

Higher Order Tensors for DNS Data Analysis and Compression

In: Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Author

Listed:
  • Hemanth Kolla

    (Sandia National Laboratories)

  • Konduri Aditya

    (Indian Institute of Science, Department of Computational and Data Sciences)

  • Jacqueline H. Chen

    (Sandia National Laboratories)

Abstract

We propose the use of higher order tensors, and their decompositions, for efficient analysis of combustion direct numerical simulation (DNS) data. Turbulent combustion DNS data, being inherently multiscale and multivariate, pose many challenges and higher order tensors are a natural abstraction to organise, probe and analyse them. The chapter gives a high-level overview of prominent tensor decomposition methods, their interpretation, algorithmic challenges and desirable properties. Two examples of DNS analysis employing tensor decompositions are then presented. The first analysis, based on truncated higher order singular value decomposition (truncated HOSVD), also known as Tucker decomposition, allows significant, albeit lossy, compression of DNS data, which may be inevitable in the exascale computing era. The factors aiding, and impeding, compression and the implications in terms of element-wise error distributions are presented using three candidate DNS data sets. The second analysis is centred on higher order joint moment tensors, which are richly informative for multivariate non-Gaussian variables. An anomaly detection algorithm based on the decomposition of the fourth moment tensor is presented, and its ability in detecting localised auto-ignition kernels in a homogeneous charge compression ignition (HCCI) data set is examined.

Suggested Citation

  • Hemanth Kolla & Konduri Aditya & Jacqueline H. Chen, 2020. "Higher Order Tensors for DNS Data Analysis and Compression," Springer Books, in: Heinz Pitsch & Antonio Attili (ed.), Data Analysis for Direct Numerical Simulations of Turbulent Combustion, chapter 0, pages 109-134, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-44718-2_6
    DOI: 10.1007/978-3-030-44718-2_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-44718-2_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.