Author
Listed:
- Jan Schilliger
(Institute for Dynamic Systems and Control, ETH Zürich)
- Nils Keller
(Institute for Dynamic Systems and Control, ETH Zürich)
- Severin Hänggi
(Institute for Dynamic Systems and Control, ETH Zürich)
- Thivaharan Albin
(Institute for Dynamic Systems and Control, ETH Zürich)
- Christopher Onder
(Institute for Dynamic Systems and Control, ETH Zürich)
Abstract
For new combustion control concepts such as Combustion Rate Shaping, a crank angle resolved model of the compression ignition (CI) combustion process is necessary. The complex CI combustion process involving fuel injection, turbulent flow, and chemical reactions has to be reproduced. However, to be suitable for control, it has to be computationally efficient at the same time. To allow for learning-based control, the model should be able to adapt to the current measurement data. This paper proposes two algorithms that model the CI combustion dynamics by learning a crank angle resolved model from past heat release rate (HRR) measurement data. They are characterized by short learning and evaluation times, low calibration effort, and high adaptability. Both approaches approximate the total HRR as the linear superposition of the HRRs of individual fuel packages. The first algorithm approximates the HRR of a single fuel package as a Vibe function and identifies the parameters by solving a nonlinear program having the squared difference between the measured HRR and the superposition as cost. The second algorithm approximates the individual packages’ HRRs as Gaussian distributions and estimates the parameters by solving a nonlinear program with the Kullback–Leibler divergence between the measurement and the superposition as cost function using the expectation–maximization algorithm. Both algorithms are validated using test bench measurement data.
Suggested Citation
Jan Schilliger & Nils Keller & Severin Hänggi & Thivaharan Albin & Christopher Onder, 2020.
"Data-Based Modeling for the Crank Angle Resolved CI Combustion Process,"
Springer Books, in: Heinz Pitsch & Antonio Attili (ed.), Data Analysis for Direct Numerical Simulations of Turbulent Combustion, chapter 0, pages 197-213,
Springer.
Handle:
RePEc:spr:sprchp:978-3-030-44718-2_10
DOI: 10.1007/978-3-030-44718-2_10
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-44718-2_10. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.