IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-34910-3_3.html
   My bibliography  Save this book chapter

Standard Bundle Methods: Untrusted Models and Duality

In: Numerical Nonsmooth Optimization

Author

Listed:
  • Antonio Frangioni

    (Università di Pisa, Dipartimento di Informatica)

Abstract

We review the basic ideas underlying the vast family of algorithms for nonsmooth convex optimization known as “bundle methods”. In a nutshell, these approaches are based on constructing models of the function, but lack of continuity of first-order information implies that these models cannot be trusted, not even close to an optimum. Therefore, many different forms of stabilization have been proposed to try to avoid being led to areas where the model is so inaccurate as to result in almost useless steps. In the development of these methods, duality arguments are useful, if not outright necessary, to better analyze the behaviour of the algorithms. In addition, in many relevant applications the function at hand is itself a dual one, so that duality allows to map back algorithmic concepts and results into a “primal space” where they can be exploited; in turn, structure in that space can be exploited to improve the algorithms’ behaviour, e.g. by developing better models. We present an updated picture of the many developments around the basic idea along at least three different axes: form of the stabilization, form of the model, and approximate evaluation of the function.

Suggested Citation

  • Antonio Frangioni, 2020. "Standard Bundle Methods: Untrusted Models and Duality," Springer Books, in: Adil M. Bagirov & Manlio Gaudioso & Napsu Karmitsa & Marko M. Mäkelä & Sona Taheri (ed.), Numerical Nonsmooth Optimization, chapter 0, pages 61-116, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-34910-3_3
    DOI: 10.1007/978-3-030-34910-3_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-34910-3_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.