IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-34910-3_19.html
   My bibliography  Save this book chapter

Model-Based Methods in Derivative-Free Nonsmooth Optimization

In: Numerical Nonsmooth Optimization

Author

Listed:
  • Charles Audet

    (École Polytechnique de Montréal, GERAD and Département de Mathématiques et Génie Industriel)

  • Warren Hare

    (University of British Columbia, Department of Mathematics)

Abstract

Derivative-free optimization (DFO) is the mathematical study of the optimization algorithms that do not use derivatives. One branch of DFO focuses on model-based DFO methods, where an approximation of the objective function is used to guide the optimization algorithm. Historically, model-based DFO has often assumed that the objective function is smooth, but unavailable analytically. However, recent progress has brought model-based DFO into the realm of nonsmooth optimization (NSO). In this chapter, we survey some of the progress of model-based DFO for nonsmooth functions. We begin with some historical context on model-based DFO. From there, we discuss methods for constructing models of smooth functions and their accuracy. This leads to modelling techniques for nonsmooth functions and a discussion on several frameworks for model-based DFO for NSO. We conclude the chapter with some of our opinions on profitable research directions in model-based DFO for NSO.

Suggested Citation

  • Charles Audet & Warren Hare, 2020. "Model-Based Methods in Derivative-Free Nonsmooth Optimization," Springer Books, in: Adil M. Bagirov & Manlio Gaudioso & Napsu Karmitsa & Marko M. Mäkelä & Sona Taheri (ed.), Numerical Nonsmooth Optimization, chapter 0, pages 655-691, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-34910-3_19
    DOI: 10.1007/978-3-030-34910-3_19
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-34910-3_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.