IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-34910-3_13.html
   My bibliography  Save this book chapter

New Multiobjective Proximal Bundle Method with Scaled Improvement Function

In: Numerical Nonsmooth Optimization

Author

Listed:
  • Marko M. Mäkelä

    (University of Turku, Department of Mathematics and Statistics)

  • Outi Montonen

    (University of Turku, Department of Mathematics and Statistics)

Abstract

Improvement functions are used in nonsmooth optimization both for constraint handling and scalarization of multiple objectives. In the multiobjective case the improvement function possesses, for example the nice property that a descent direction for the improvement function improves all the objectives of the original problem. However, the numerical experiments have shown that the standard improvement function is rather sensitive for scaling. For this reason we present here a new scaled version of the improvement function capable not only for linear but also for polynomial, logarithmic, and exponential scaling for both objective and constraint functions. In order to be convinced about the usability of the scaled improvement function, we develop a new version of the multiobjective proximal bundle method utilizing the scaled improvement function. This new method can be proved to produce weakly Pareto stationary solutions. In addition, under some generalized convexity assumptions the solutions are guaranteed to be globally weakly Pareto optimal. Furthermore, we illustrate the affect of the scaling with some numerical examples.

Suggested Citation

  • Marko M. Mäkelä & Outi Montonen, 2020. "New Multiobjective Proximal Bundle Method with Scaled Improvement Function," Springer Books, in: Adil M. Bagirov & Manlio Gaudioso & Napsu Karmitsa & Marko M. Mäkelä & Sona Taheri (ed.), Numerical Nonsmooth Optimization, chapter 0, pages 461-479, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-34910-3_13
    DOI: 10.1007/978-3-030-34910-3_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-34910-3_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.