IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-34910-3_12.html
   My bibliography  Save this book chapter

Bundle Methods for Inexact Data

In: Numerical Nonsmooth Optimization

Author

Listed:
  • Welington de Oliveira

    (MINES ParisTech, PSL – Research University, CMA – Centre de Mathématiques Appliquées)

  • Mikhail Solodov

    (IMPA – Instituto de Matemática Pura e Aplicada)

Abstract

Many applications of optimization to real-life problems lead to nonsmooth objective and/or constraint functions that are assessed through “noisy” oracles. In particular, only some approximations to the function and/or subgradient values are available, while exact values are not. For example, this is the typical case in Lagrangian relaxation of large-scale (possibly mixed-integer) optimization problems, in stochastic programming, and in robust optimization, where the oracles perform some numerical procedure to evaluate functions and subgradients, such as solving one or more optimization subproblems, multidimensional integration, or simulation. As a consequence, one cannot expect such oracles to provide exact data on the function values and/or subgradients. We review algorithms based on the bundle methodology, mostly developed quite recently, that have the ability to handle inexact data. We adopt an approach which, although not exaustive, covers various classes of bundle methods and various types of inexact oracles, for unconstrained and convexly constrained problems (with both convex and nonconvex objective functions), as well as nonsmooth mixed-integer optimization.

Suggested Citation

  • Welington de Oliveira & Mikhail Solodov, 2020. "Bundle Methods for Inexact Data," Springer Books, in: Adil M. Bagirov & Manlio Gaudioso & Napsu Karmitsa & Marko M. Mäkelä & Sona Taheri (ed.), Numerical Nonsmooth Optimization, chapter 0, pages 417-459, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-34910-3_12
    DOI: 10.1007/978-3-030-34910-3_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-34910-3_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.