IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-34675-1_7.html

Multistage Carcinogenesis: A Unified Framework for Cancer Data Analysis

In: Statistical Modeling for Biological Systems

Author

Listed:
  • Suresh Moolgavkar

    (Fred Hutchinson Cancer Research Center
    Exponent, Inc.)

  • Georg Luebeck

    (Fred Hutchinson Cancer Research Center)

Abstract

Traditional approaches to the analysis of epidemiologic data are focused on estimation of the relative risk and are based on the proportional hazards model. Proportionality of hazards in epidemiologic data is a strong assumption that is often violated but seldom checked. Risk often depends on detailed patterns of exposure to environmental agents, but detailed exposure histories are difficult to incorporate in the traditional approaches to analyses of epidemiologic data. For epidemiologic data on cancer, an alternative approach to analysis can be based on ideas of multistage carcinogenesis. The process of carcinogenesis is characterized by mutation accumulation and clonal expansion of partially altered cells on the pathway to cancer. Although this paradigm is now firmly established, most epidemiologic studies of cancer incorporate ideas of multistage carcinogenesis neither in their design nor in their analyses. In this paper we will briefly discuss stochastic multistage models of carcinogenesis and the construction of the appropriate likelihoods for analyses of epidemiologic data using these models. Statistical analyses based on multistage models can quite explicitly incorporate detailed exposure histories in the construction of the likelihood. We will give examples to show that using ideas of multistage carcinogenesis can help reconcile seemingly contradictory findings, and yield insights into epidemiologic studies of cancer that would be difficult or impossible to get from conventional methods. Finally, multistage cancer models provide a unified framework for analyses of data from diverse sources.

Suggested Citation

  • Suresh Moolgavkar & Georg Luebeck, 2020. "Multistage Carcinogenesis: A Unified Framework for Cancer Data Analysis," Springer Books, in: Anthony Almudevar & David Oakes & Jack Hall (ed.), Statistical Modeling for Biological Systems, pages 117-136, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-34675-1_7
    DOI: 10.1007/978-3-030-34675-1_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-34675-1_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.