IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-33439-0_4.html
   My bibliography  Save this book chapter

Proportional hazards modelsRegression models

In: Survival Analysis

Author

Listed:
  • John O’Quigley

    (University College London, Department of Statistical Science)

Abstract

We consider several models that describe survival in the presence of observable covariates, these covariates measuring subject heterogeneity. The most general situation can be described by a model with a parameter of high, possibly unbounded, dimension. We refer to this as the general or non-proportional hazards model since dependence is expressed via a parameter, $$\beta (t),$$ β ( t ) , that is not constrained or restricted. Proportional hazards models have the same form but constrain $$\beta (t)$$ β ( t ) to be a constant. We write the constant as $$\beta ,$$ β , sometimes $$\beta _0$$ β 0 , since it does not change with time. When the covariate itself is constant, the dependence structure corresponds to the Cox regression model. We describe this model, its connection to the well-known log-rank test, and its use in many applications. We recall the founding paper of Cox ((Cox, 1972)) and the many discussions that surrounded that paper. Some of the historical backgrounds that lay behind Cox’s proposal is also recalled in order to for the new reader to quickly appreciate that, brilliant though Professor Cox’s insights were, they leant on more than just his imagination. They did not emerge from a vacuum. Some discussion on how the model should be used in practice is given.

Suggested Citation

  • John O’Quigley, 2021. "Proportional hazards modelsRegression models," Springer Books, in: Survival Analysis, chapter 0, pages 75-95, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-33439-0_4
    DOI: 10.1007/978-3-030-33439-0_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-33439-0_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.