Author
Listed:
- Hanne Hardering
(Institut für Numerische Mathematik, Technische Universität Dresden)
- Oliver Sander
(Institut für Numerische Mathematik, Technische Universität Dresden)
Abstract
Geometric finite elements (GFE) generalize the idea of Galerkin methods to variational problems for unknowns that map into nonlinear spaces. In particular, GFE methods introduce proper discrete function spaces that are conforming in the sense that values of geometric finite element functions are in the codomain manifold ℳ $$\mathcal {M}$$ at any point. Several types of such spaces have been constructed, and some are even completely intrinsic, i.e., they can be defined without any surrounding space. GFE spaces enable the elegant numerical treatment of variational problems posed in Sobolev spaces with nonlinear codomain space. Indeed, as GFE spaces are geometrically conforming, such variational problems have natural formulations in GFE spaces. These correspond to the discrete formulations of classical finite element methods. Also, the canonical projection onto the discrete maps commutes with the differential for a suitable notion of the tangent bundle as a manifold, and we therefore also obtain natural weak formulations. Rigorous results exist that show the optimal behavior of the a priori L 2 and H 1 errors under reasonable smoothness assumptions. Although the discrete function spaces are no vector spaces, their elements can nevertheless be described by sets of coefficients, which live in the codomain manifold. Variational discrete problems can then be reformulated as algebraic minimization problems on the set of coefficients. These algebraic problems can be solved by established methods of manifold optimization. This text will explain the construction of several types of GFE spaces, discuss the corresponding test function spaces, and sketch the a priori error theory. It will also show computations of the harmonic maps problem, and of two example problems from nanomagnetics and plate mechanics.
Suggested Citation
Hanne Hardering & Oliver Sander, 2020.
"Geometric Finite Elements,"
Springer Books, in: Philipp Grohs & Martin Holler & Andreas Weinmann (ed.), Handbook of Variational Methods for Nonlinear Geometric Data, chapter 0, pages 3-49,
Springer.
Handle:
RePEc:spr:sprchp:978-3-030-31351-7_1
DOI: 10.1007/978-3-030-31351-7_1
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-31351-7_1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.