IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-16077-7_15.html
   My bibliography  Save this book chapter

Shape Optimization for Interior Neumann and Transmission Eigenvalues

In: Integral Methods in Science and Engineering

Author

Listed:
  • Andreas Kleefeld

    (Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH)

Abstract

Shape optimization problems for interior eigenvalues is a very challenging task since already the computation of interior eigenvalues for a given shape is far from trivial. For example, a concrete maximizer with respect to shapes of fixed area is theoretically established only for the first two non-trivial Neumann eigenvalues. The existence of such a maximizer for higher Neumann eigenvalues is still unknown. Hence, the problem should be addressed numerically. Better numerical results are achieved for the maximization of some Neumann eigenvalues using boundary integral equations for a simplified parametrization of the boundary in combination with a non-linear eigenvalue solver. Shape optimization for interior transmission eigenvalues is even more complicated since the corresponding transmission problem is non-self-adjoint and non-elliptic. For the first time numerical results are presented for the minimization of interior transmission eigenvalues for which no single theoretical result is yet available.

Suggested Citation

  • Andreas Kleefeld, 2019. "Shape Optimization for Interior Neumann and Transmission Eigenvalues," Springer Books, in: Christian Constanda & Paul Harris (ed.), Integral Methods in Science and Engineering, chapter 0, pages 185-196, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-16077-7_15
    DOI: 10.1007/978-3-030-16077-7_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-16077-7_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.