IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-15242-0_4.html
   My bibliography  Save this book chapter

Piecewise Continuous Stepanov-Like Almost Automorphic Functions with Applications to Impulsive Systems

In: Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Author

Listed:
  • Syed Abbas

    (Indian Institute of Technology Mandi, School of Basic Sciences)

  • Lakshman Mahto

    (Indian Institute of Information Technology Dharwad, Department of Mathematics)

Abstract

In this chapter, we discuss Stepanov-like almost automorphic function in the framework of impulsive systems. Next, we establish the existence and uniqueness of such solution of a very general class of delayed model of impulsive neural network. The coefficients and forcing term are assumed to be Stepanov-like almost automorphic in nature. Since the solution is no longer continuous, so we introduce the concept of piecewise continuous Stepanov-like almost automorphic function. We establish some basic and important properties of these functions and then prove composition theorem. Composition theorem is an important result from the application point of view. Further, we use composition result and fixed point theorem to investigate existence, uniqueness and stability of solution of the problem under consideration. Finally, we give a numerical example to illustrate our analytical findings.

Suggested Citation

  • Syed Abbas & Lakshman Mahto, 2019. "Piecewise Continuous Stepanov-Like Almost Automorphic Functions with Applications to Impulsive Systems," Springer Books, in: Hemen Dutta & Ljubiša D. R. Kočinac & Hari M. Srivastava (ed.), Current Trends in Mathematical Analysis and Its Interdisciplinary Applications, chapter 0, pages 119-140, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-15242-0_4
    DOI: 10.1007/978-3-030-15242-0_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-15242-0_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.