IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-15242-0_14.html
   My bibliography  Save this book chapter

On Generalized Derivative Sampling Series Expansion

In: Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Author

Listed:
  • Zurab A. Piranashvili

    (Vladimir Chavchanidze Institute of Cybernetics, Georgian Technical University)

  • Tibor K. Pogány

    (University of Rijeka, Faculty of Maritime Studies
    Óbuda University, Institute of Applied Mathematics)

Abstract

Master generalized sampling series expansion is presented for entire functions (signals) coming from a class whose members satisfy an extended exponential boundedness condition. Firstly, estimates are given for the remainder of Maclaurin series of those functions and consequent derivative sampling results are obtained and discussed. The established results are employed in evaluating the related remainder term of signals which occur in sampling series expansion of stochastic processes and random fields (not necessarily stationary or homogeneous) whose spectral kernel satisfies the relaxed exponential boundedness. The derived truncation error upper bounds enable to obtain mean-square master generalized derivative sampling series expansion formulae either for harmonizable Piranashvili-type stochastic processes or for random fields. Finally, being the sampling series convergence rate exponential, almost sure P sampling series expansion formulae are presented.

Suggested Citation

  • Zurab A. Piranashvili & Tibor K. Pogány, 2019. "On Generalized Derivative Sampling Series Expansion," Springer Books, in: Hemen Dutta & Ljubiša D. R. Kočinac & Hari M. Srivastava (ed.), Current Trends in Mathematical Analysis and Its Interdisciplinary Applications, chapter 0, pages 491-519, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-15242-0_14
    DOI: 10.1007/978-3-030-15242-0_14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-15242-0_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.