IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-13609-3_17.html
   My bibliography  Save this book chapter

The Poincaré Conjecture and Related Statements

In: Geometry in History

Author

Listed:
  • Valerii N. Berestovskii

    (Sobolev Institute of Mathematics SB RAS
    Novosibirsk State University)

Abstract

The main topics of this paper are mathematical statements, results or problems related with the Poincaré conjecture, a recipe to recognize the three-dimensional sphere. The statements, results and problems are equivalent forms, corollaries, strengthenings of this conjecture, or problems of a more general nature such as the homeomorphism problem, the manifold recognition problem and the existence problem of some polyhedral, smooth and geometric structures on topological manifolds. Examples of polyhedral structures are simplicial triangulations and combinatorial simplicial triangulations of topological manifolds; so appears the triangulation conjecture, more exactly, the triangulation problem. Examples of geometric structures are Riemannian metrics that are locally homogeneous or have constant zero, positive or negative sectional curvature; more general structures are intrinsic or geodesic metrics with curvature bounded above or/and below in the sense of A.D. Alexandrov or with nonpositive curvature in the sense of H. Busemann.

Suggested Citation

  • Valerii N. Berestovskii, 2019. "The Poincaré Conjecture and Related Statements," Springer Books, in: S. G. Dani & Athanase Papadopoulos (ed.), Geometry in History, chapter 0, pages 623-685, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-13609-3_17
    DOI: 10.1007/978-3-030-13609-3_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-13609-3_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.