IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-13325-2_12.html
   My bibliography  Save this book chapter

Towards Clean Propulsion with Synthetic Fuels: Computational Aspects and Analysis

In: High Performance Computing in Science and Engineering ' 18

Author

Listed:
  • Mathis Bode

    (RWTH Aachen University, Institute for Combustion Technology)

  • Marco Davidovic

    (RWTH Aachen University, Institute for Combustion Technology)

  • Heinz Pitsch

    (RWTH Aachen University, Institute for Combustion Technology)

Abstract

In order to support sustainable powertrain concepts, synthetic fuels show significant potential to be a promising solution for future mobility. It was found that $$\mathrm {CO_2}$$ emissions during the combustion process of synthetic fuels can be reduced compared to conventional fuels and that sustainable fuel production pathways exists. Furthermore, it is possible to burn some synthetic fuels soot-free, which indirectly also eliminates the well-known soot- $$\mathrm {NO}_x$$ tradeoff. However, in order to use the full potential of the new fuels, optimization of currently used injection systems needs to be performed. This is still challenging since fundamental properties are not known and pollutant formation is a multi-physics, multi-scale process. Therefore, the high-fidelity simulation framework CIAO is improved and optimized for predictive simulations of multiphase, reactive injections in complex geometries. Due to the large separation of scales, these simulations are only possible with current supercomputers. This work discusses the computational performance of the high-fidelity simulations especially focusing on vectorization, scaling, and input/output (I/O) on Hazel Hen (Cray XC40) supercomputer at the High Performance Computing Center Stuttgart (HLRS). Moreover, the impact of different internal nozzle flow initial conditions is shown, the effect of different chemical mechanisms studied, and the predictability of soot emissions investigated. The Spray A case defined by the Engine Combustion Network (ECN) is used as the target case due to the availability of experimental data for this injector.

Suggested Citation

  • Mathis Bode & Marco Davidovic & Heinz Pitsch, 2019. "Towards Clean Propulsion with Synthetic Fuels: Computational Aspects and Analysis," Springer Books, in: Wolfgang E. Nagel & Dietmar H. Kröner & Michael M. Resch (ed.), High Performance Computing in Science and Engineering ' 18, pages 185-207, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-13325-2_12
    DOI: 10.1007/978-3-030-13325-2_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-13325-2_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.