IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4939-1106-6_6.html
   My bibliography  Save this book chapter

Spectral Properties of Toeplitz Operators Acting on Gabor Type Reproducing Kernel Hilbert Spaces

In: Mathematics Without Boundaries

Author

Listed:
  • H. G. Feichtinger

    (University Vienna, Faculty of Mathematics)

  • K. Nowak

    (Drexel University, Department of Computer Science)

  • M. Pap

    (University of Pécs, Faculty of Sciences)

Abstract

This is a survey presenting an overview of the results describing the behavior of the eigenvalues of compact Gabor–Toeplitz operators and Gabor multipliers. We introduce Gabor–Toeplitz operators and Gabor multipliers as Toeplitz operators defined in the context of general reproducing kernel Hilbert spaces. In the first case the reproducing kernel Hilbert space is derived from the continuous Gabor reproducing formula, and in the second case, out of the discrete Gabor reproducing formula, based on tight Gabor frames. The extended metaplectic representation provides all affine transformations of the phase-space. Both classes of operators satisfy natural transformation properties with respect to this group, and both have natural interpretations from the point of view of phase space geometry. Toeplitz operators defined on the Fock space of several complex variables are at the background of the topic. The Berezin transform of general reproducing kernel Hilbert spaces applied to both kinds of Toeplitz operators shares in both cases the same natural phase-space interpretation of the Fock space model. In the first part of the survey we discuss the dependence of the eigenvalues on symbols and generating functions. Then we concentrate on Szegö type asymptotic formulae in order to analyze the dependence on the symbol and on Schatten class cutoff phenomena in dependence on the generating function. In the second part we restrict attention to symbols which are characteristic functions of phase space domains, called localization domains in the current context. The corresponding Toeplitz operators are called localization operators. We present results expressing mutual interactions between localization domains and generating functions from the point of view of the eigenvalues of the localization operators. In particular, we discuss asymptotic boundary forms quantifying these interactions locally at the boundary points of localization domains. Our approach to localization operators is motivated by the principles of the semiclassical limit. We finish the survey with a list of open problems and possible future research directions.

Suggested Citation

  • H. G. Feichtinger & K. Nowak & M. Pap, 2014. "Spectral Properties of Toeplitz Operators Acting on Gabor Type Reproducing Kernel Hilbert Spaces," Springer Books, in: Themistocles M. Rassias & Panos M. Pardalos (ed.), Mathematics Without Boundaries, edition 127, pages 163-180, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4939-1106-6_6
    DOI: 10.1007/978-1-4939-1106-6_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4939-1106-6_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.