Author
Listed:
- Khalid Adarbeh
(KFUPM, Department of Mathematics and Statistics)
- Salah-Eddine Kabbaj
(KFUPM, Department of Mathematics and Statistics)
Abstract
In 1969, Osofsky proved that a chained ring (i.e., local arithmetical ring) with zero divisors has infinite weak global dimension; that is, the weak global dimension of an arithmetical ring is 0, 1, or ∞. In 2007, Bazzoni and Glaz studied the homological aspects of Prüfer-like rings, with a focus on Gaussian rings. They proved that Osofsky’s aforementioned result is valid in the context of coherent Gaussian rings (and, more generally, in coherent Prüfer rings). They closed their paper with a conjecture sustaining that “the weak global dimension of a Gaussian ring is 0, 1, or ∞.” In 2010, the authors of Bakkari et al. (J. Pure Appl. Algebra 214:53–60, 2010) provided an example of a Gaussian ring which is neither arithmetical nor coherent and has an infinite weak global dimension. In 2011, the authors of Abuihlail et al. (J. Pure Appl. Algebra 215:2504–2511, 2011) introduced and investigated the new class of fqp-rings which stands strictly between the two classes of arithmetical rings and Gaussian rings. Then, they proved the Bazzoni-Glaz conjecture for fqp-rings. This paper surveys a few recent works in the literature on the weak global dimension of Prüfer-like rings making this topic accessible and appealing to a broad audience. As a prelude to this, the first section of this paper provides full details for Osofsky’s proof of the existence of a module with infinite projective dimension on a chained ring. Numerous examples—arising as trivial ring extensions—are provided to illustrate the concepts and results involved in this paper.
Suggested Citation
Khalid Adarbeh & Salah-Eddine Kabbaj, 2014.
"Weak Global Dimension of Prüfer-Like Rings,"
Springer Books, in: Marco Fontana & Sophie Frisch & Sarah Glaz (ed.), Commutative Algebra, edition 127, pages 1-23,
Springer.
Handle:
RePEc:spr:sprchp:978-1-4939-0925-4_1
DOI: 10.1007/978-1-4939-0925-4_1
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4939-0925-4_1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.