IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4939-0790-8_39.html
   My bibliography  Save this book chapter

Non-linear Image Registration

In: Handbook of Mathematical Methods in Imaging

Author

Listed:
  • Lars Ruthotto

    (Emory University, Department of Mathematics and Computer Science)

  • Jan Modersitzki

    (University of Lübeck, Institute of Mathematics and Image Computing)

Abstract

Image registration is to automatically establish geometrical correspondences between two images. It is an essential task in almost all areas involving imaging. This chapter reviews mathematical techniques for nonlinear image registration and presents a general, unified, and flexible approach. Taking into account that image registration is an ill-posed problem, the presented approach is based on a variational formulation and particular emphasis is given to regularization functionals motivated by mathematical elasticity. Starting out from one of the most commonly used linear elastic models, its limitations and extensions to nonlinear regularization functionals based on the theory of hyperelastic materials are considered. A detailed existence proof for hyperelastic image registration problems illustrates key concepts of polyconvex variational calculus. Numerical challenges in solving hyperelastic registration problems are discussed and a stable discretization that guarantees meaningful solutions is derived. Finally, two case studies highlight the potential of hyperelastic image registration for medical imaging applications.

Suggested Citation

  • Lars Ruthotto & Jan Modersitzki, 2015. "Non-linear Image Registration," Springer Books, in: Otmar Scherzer (ed.), Handbook of Mathematical Methods in Imaging, edition 2, pages 2005-2051, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4939-0790-8_39
    DOI: 10.1007/978-1-4939-0790-8_39
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4939-0790-8_39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.