IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4939-0790-8_26.html
   My bibliography  Save this book chapter

Local Smoothing Neighborhood Filters

In: Handbook of Mathematical Methods in Imaging

Author

Listed:
  • Jean-Michel Morel

    (École Normale Supérieure de Cachan)

  • Antoni Buades

    (Universitat Illes Balears)

  • Tomeu Coll

    (Universitat de les Illes Balears)

Abstract

Denoising images can be achieved by a spatial averaging of nearby pixels. However, although this method removes noise, it creates blur. Hence, neighborhood filters are usually preferred. These filters perform an average of neighboring pixels, but only under the condition that their gray level is close enough to the one of the pixel in restoration. This very popular method unfortunately creates shocks and staircasing effects. It also excessivelly blurs texture and fine structures when noise dominates the signal.In this chapter, we perform an asymptotic analysis of neighborhood filters as the size of the neighborhood shrinks to zero. We prove that these filters are asymptotically equivalent to the Perona-Malik equation, one of the first nonlinear PDEs proposed for image restoration. As a solution to the shock effect, we propose an extremely simple variant of the neighborhood filter using a linear regression instead of an average. By analyzing its subjacent PDE, we prove that this variant does not create shocks: it is actually related to the mean curvature motion.We also present a generalization of neighborhood filters, the nonlocal means (NL-means) algorithm, addressing the preservation of structure in a digital image. The NL-means algorithm tries to take advantage of the high degree of redundancy of any natural image. By this, we simply mean that every small window in a natural image has many similar windows in the same image. Now in a very general sense inspired by the neighborhood filters, one can define as “neighborhood of a pixel” any set of pixels with a similar window around. All pixels in that neighborhood can be used for predicting its denoised value.We finally analyze the recently introduced variational formulations of neighborhood filters and their application to segmentation and seed diffusion.

Suggested Citation

  • Jean-Michel Morel & Antoni Buades & Tomeu Coll, 2015. "Local Smoothing Neighborhood Filters," Springer Books, in: Otmar Scherzer (ed.), Handbook of Mathematical Methods in Imaging, edition 2, pages 1599-1643, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4939-0790-8_26
    DOI: 10.1007/978-1-4939-0790-8_26
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4939-0790-8_26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.