IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4899-2608-1_21.html
   My bibliography  Save this book chapter

Semigroup Rings of Completely Regular Semigroups

In: Lattices, Semigroups, and Universal Algebra

Author

Listed:
  • W. D. Munn

    (University of Glasgow, Department of Mathematics)

Abstract

A semigroup S is said to be completely regular if and only if it is covered by its subgroups; that is, if and only if, for each a ∈ S, a ∈ a2 S∩S a2. Groups and bands (semigroups of idempotents) are extreme special cases. In this paper a survey is given of results on the Jacobson radical of the semigroup ring of a completely regular semigroup over a ring with unity. Much of the inspiration is derived from the study of group rings, in which a similar interplay of two distinct branches of algebra is apparent. The work discussed covers a period of some thirty- six years, from the first paper on semigroup rings by Marianne Teissier (1952) to the present day.

Suggested Citation

  • W. D. Munn, 1990. "Semigroup Rings of Completely Regular Semigroups," Springer Books, in: Jorge Almeida & Gabriela Bordalo & Philip Dwinger (ed.), Lattices, Semigroups, and Universal Algebra, pages 191-201, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4899-2608-1_21
    DOI: 10.1007/978-1-4899-2608-1_21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4899-2608-1_21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.