Author
Abstract
In reliability studies, the question of assessing the behavior of the failure rate of a given device often arises. In practice, it is assumed that the life length of the device has a certain distribution, such as exponential, Weibull, gamma, or that its life length belongs to a given family of distributions, such as increasing failure rate, increasing failure rate average. Based on field data collected about the failure times of identical devices optimal estimates of the failure rate are obtained and hypothesis testing for the parameters of the assumed distribution function are carried out. In many cases collecting enough data for sound statistical conclusions to be drawn is not possible either because of prohibitive cost or insufficient time available to observe all failure times of items on test. Even if enough data can be collected, the validity of the inference procedures are questionable due to the sometimes unfounded but necessary assumptions that must be imposed concerning the distribution function of the failure time. One way to avoid the above difficulties is to examine the failure mechanism of the given device and thus determine in a proper fashion the form of its distribution function. In this paper we concern ourselves with deterioration models, and we discuss three such models. In the first model a device is subject to damage and wear. The damage is assumed to be an increasing strong Markov pure jump process and the wear occurs at a constant rate. This amounts to saying that damage occurs because of shocks and that the times and magnitudes of shocks form a Poisson random measure on R+ × (0,∞) and the rate of wear is a constant a > 0. We call this model Pure Jump Damage Process With Drift. The second model differs from the first in one regard: between shocks the device wears at a rate which is equal to the damage accumulated right before the occurrence of the shock. For example, between the first and second shock the device fails at a constant rate which is equal to the left hand limit of the damage level at the time of occurrence of the first shock. We call this model Deterioration Processes With Wear Depending On Damage Level. The third model differs drastically from the first two. In this model, the deterioration process is assumed to be a Markov additive process (X,Z). The process X = (Xt) describes the state of the environment, and the increasing process Z = (Zt) describes the accumulated deterioration the device suffers. The process Z has conditionally independent increments given the paths of the environment process. In all three models, the device is assumed to have a threshold and it fails once the accumulated deterioration exceeds or is equal to the threshold. We study life distribution properties of such devices and the effect of the parameters of the deterioration process on the failure rate.
Suggested Citation
Mohamed Abdel-Hameed, 1986.
"Deterioration processes,"
Springer Books, in: Jacques Janssen (ed.), Semi-Markov Models, pages 231-252,
Springer.
Handle:
RePEc:spr:sprchp:978-1-4899-0574-1_13
DOI: 10.1007/978-1-4899-0574-1_13
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4899-0574-1_13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.