IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4757-5303-5_5.html
   My bibliography  Save this book chapter

Structural Characteristics for Set Functions

In: Fuzzy Measure Theory

Author

Listed:
  • Zhenyuan Wang

    (State University of New York at Binghamton)

  • George J. Klir

    (State University of New York at Binghamton)

Abstract

Up to now, we have used some structural characteristics such as nonnegativity, monotonicity, additivity, subadditivity, λ-rule, f-additivity, continuity, etc. to describe the features of a set function. Since the fuzzy measures in general lose additivity, they appear much looser than the classical measures. Thus it is quite difficult to develop a general theory of fuzzy measures without any additional condition. Before 1981, it was thought that fuzzy measures additionally possessed subadditivity (even f-additivity), or satisfied the λ-rule. But these conditions are so strong that the essence of the problem is concealed in most propositions. Since 1981, many new concepts on structural characteristics, which fuzzy measures (or the monotone set functions) may possess (e.g., null-additivity, autocontinuity and uniform autocontinuity) have been introduced. As we shall see later, they are substantially weaker than subadditivity or the λ-rule, but can effectively depict most important fuzzy measures and are powerful enough to guarantee that many important theorems presented in the following two chapters will be justified. In several theorems, they go so far as to be a necessary and sufficient condition. In fuzzy measure theory, these new concepts replace additivity and thus play important roles.

Suggested Citation

  • Zhenyuan Wang & George J. Klir, 1992. "Structural Characteristics for Set Functions," Springer Books, in: Fuzzy Measure Theory, chapter 0, pages 95-113, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4757-5303-5_5
    DOI: 10.1007/978-1-4757-5303-5_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4757-5303-5_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.