IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4757-3522-2_6.html
   My bibliography  Save this book chapter

The Bootstrap

In: Fundamentals of Modern Statistical Methods

Author

Listed:
  • Rand R. Wilcox

    (University of Southern California, Department of Psychology)

Abstract

When testing hypotheses (or computing confidence intervals) with the one-sample Student’s T method described in Chapter 5, the central limit theorem tells us that Student’s T performs better as the sample size increases. That is, under random sampling the discrepancy between the nominal and actual Type I error probability will go to zero as the sample size goes to infinity. But unfortunately, for reasons outlined in Section 5.3 of Chapter 5, there are realistic situations where about two hundred observations are needed to get satisfactory control over the probability of a Type I error or accurate probability coverage when computing confidence intervals. When comparing the population means of two groups of individuals, using Student’s T is known to be unsatisfactory when sample sizes are small or even moderately large. In fact, it might be unsatisfactory no matter how large the sample sizes are because under general conditions it does not converge to the correct answer (Cressie and Whitford, 1986). Switching to the test statistic W given by Equation 5.3, the central limit theorem now applies under general conditions, so using W means we will converge to the correct answer as the sample sizes increase, but in some cases we again need very large sample sizes to get accurate results. (There are simple methods for improving the performance of W using what are called estimated degrees of freedom, but the improvement remains highly unsatisfactory for a wide range of situations.) Consequently, there is interest in finding methods that beat our reliance on the central limit theorem as it applies to these techniques. That is, we would like to find a method that converges to the correct answer more quickly as the sample sizes get large, and such a method is described here.

Suggested Citation

  • Rand R. Wilcox, 2001. "The Bootstrap," Springer Books, in: Fundamentals of Modern Statistical Methods, chapter 0, pages 93-115, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4757-3522-2_6
    DOI: 10.1007/978-1-4757-3522-2_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4757-3522-2_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.