IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4757-3522-2_4.html
   My bibliography  Save this book chapter

Accuracy and Inference

In: Fundamentals of Modern Statistical Methods

Author

Listed:
  • Rand R. Wilcox

    (University of Southern California, Department of Psychology)

Abstract

There is a classic result in statistics called the Gauss-Markov theorem. It describes situations under which the least squares estimator of the slope and intercept of a regression line is optimal. A special case of this theorem describes conditions under which the sample mean is optimal among the class of weighted means. In order to justify any competitor of least squares, we must understand the Gauss-Markov theorem and why it does not rule out competing methods such as the median, and other estimators to be described later. Therefore, one goal in this chapter is to give a relatively nontechnical description of this theorem. Another goal is to introduce the notion of a confidence interval, a fundamental tool used to make inferences about a population of individuals or things We will see that a so-called homoscedastic error term plays a central role in both the Gauss-Markov theorem and the conventional confidence interval used in regression. Homoscedasticity turns out to be of crucial importance in applied work because it is typically assumed and because recent results indicate that violating the homoscedasticity assumption can be disastrous. Fortunately, effective methods for dealing with this problem have been devised.

Suggested Citation

  • Rand R. Wilcox, 2001. "Accuracy and Inference," Springer Books, in: Fundamentals of Modern Statistical Methods, chapter 0, pages 49-66, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4757-3522-2_4
    DOI: 10.1007/978-1-4757-3522-2_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4757-3522-2_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.