IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4757-2763-0_7.html
   My bibliography  Save this book chapter

Rank-size plots, Zipf’s law, and scaling

In: Fractals and Scaling in Finance

Author

Listed:
  • Benoit B. Mandelbrot

    (Yale University, Mathematics Department)

Abstract

Rank-size plots, also called Zipf plots, have a role to play in representing statistical data. The method is somewhat peculiar, but throws light on one aspect of the notions of concentration. This chapter’s first goals are to define those plots and show that they are of two kinds. Some are simply an analytic restatement of standard tail distributions but other cases stand by themselves. For example, in the context of word frequencies in natural discourse, rank-size plots provide the most natural and most direct way of expressing scaling. Of greatest interest are the rank-size plots that are rectilinear in log-log coordinates. In most cases, this rectilinearity is shown to simply rephrase an underlying scaling distribution, by exchanging its coordinate axes. This rephrasing would hardly seem to deserve attention, but continually proves its attractiveness. Unfortunately, it is all too often misinterpreted and viewed as significant beyond the scaling distribution drawn in the usual axes. These are negative but strong reasons why rank-size plots deserve to be discussed in some detail. They throw fresh light on the meaning and the pitfalls of infinite expectation, and occasionally help understand upper and lower cutoffs to scaling.

Suggested Citation

  • Benoit B. Mandelbrot, 1997. "Rank-size plots, Zipf’s law, and scaling," Springer Books, in: Fractals and Scaling in Finance, chapter 0, pages 198-218, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4757-2763-0_7
    DOI: 10.1007/978-1-4757-2763-0_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4757-2763-0_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.