Author
Abstract
This long and essential chapter provides this book with two of its multiple alternative introductions. The mathematically ambitious reader who will enter here will simply glance through Section 1, which distinguishes between self-similarity and self-affinity, and Section 2, which is addressed to the reader new to fractals and takes an easy and very brief look at self-similarity. Later sections approach subtle and diverse facets of self-affine scaling from two distinct directions, each with its own significant assets and liabilities. Section 3 begins with WBM, the Wiener Brownian motion. In strict adherence to the scaling principle of economics described in Chapter E2, WBM is self-affine in a statistical sense. This is true with respect to an arbitrary reduction ratio r, and there is no underlying grid, hence WBM can be called the grid free. Repeating in more formal terms some material in Sections 6 to 8 of Chapter El, Section 3 discusses generalizations that share the scaling properties of WBM, namely, Wiener or fractional Brownian motion of fractal or multifractal time. Section 4 works within grids, hence limits the reduction ratio r to certain particular values. Being grid-bound weakens the scaling principle of economics, but this is the price to pay in exchange for a significant benefit, namely the availability of a class of self-affine non-random functions whose patterns of variability include and exceed those of Section 3. Yet, those functions fall within a unified overall master structure. They are simplified to such an extent that they can be called “toy models” or “cartoons.” The cartoons are grid-bound because they are constructed by recursive multiplicative interpolation, proceeding in a self-affine grid that is the sim?plest case prescribed in advance. The value of grid-bound non-random fractality is that it proves for many purposes to be an excellent surrogate for randomness. The properties of the models in Section 3 can be reproduced with differences that may be viewed as elements of either indeterminacy or increased versatility. Both the close relations and the differences between the cartoons could have been baffling, but they are pinpointed immediately by the enveloping master structure. At some cost, that structure can be randomly shuffled or more deeply randomized. Its overall philosophy also suggests additional implementations, of which some are dead-ends, but others deserve being explored. Wiener Brownian motion and its cartoons belong to the mild state of variability or noisiness, while the variability or noisiness of other functions of Section 3 and cartoons of Section 4 are wild. The notions of states of mild and wild randomness, as put forward in Chapter E5, are generalized in Section 5 from independent random variables to dependent random processes and non-random cartoons. Section 5.4 ends by describing an ominous scenario of extraordinary wildness. Being constrained to scaling functions, this chapter leaves no room for slow variability.
Suggested Citation
Benoit B. Mandelbrot, 1997.
"Self-similarity and panorama of self-affinity,"
Springer Books, in: Fractals and Scaling in Finance, chapter 0, pages 146-197,
Springer.
Handle:
RePEc:spr:sprchp:978-1-4757-2763-0_6
DOI: 10.1007/978-1-4757-2763-0_6
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4757-2763-0_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.