IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4757-2426-4_9.html
   My bibliography  Save this book chapter

Matrix Geometric Solutions

In: Probability, Stochastic Processes, and Queueing Theory

Author

Listed:
  • Randolph Nelson

    (OTA Limited Partnership
    IBM T.J. Watson Research Center, Modeling Methodology)

Abstract

In Example 8.12 we analyzed a scalar state process that was a modification of the M/M/1 queue. In the example, we classified two sets of states: boundary states and repeating states. Transitions between the repeating states had the property that rates from states 2, 3,..., were congruent to rates between states j, j + 1,... for all j ≥ 2. We noted in the example that this implied that the stationary distribution for the repeating portion of the process satisfied a geometric form. In this chapter we generalize this result to vector state processes that also have a repetitive structure. The technique we develop in this chapter to solve for the stationary state probabilities for such vector state Markov processes is called the matrix geometric method. (The theory of matrix geometric solutions was pioneered by Marcel Neuts; see [86] for a full development of the theory.) In much the same way that the repetition of the state transitions for this variation of the M/M/1 queue considered in Example 8.12 implied a geometric solution (with modifications made to account for boundary states), the repetition of the state transitions for vector processes implies a geometric form where scalars are replaced by matrices. We term such Markov processes matrix geometric processes.

Suggested Citation

  • Randolph Nelson, 1995. "Matrix Geometric Solutions," Springer Books, in: Probability, Stochastic Processes, and Queueing Theory, chapter 9, pages 391-428, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4757-2426-4_9
    DOI: 10.1007/978-1-4757-2426-4_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4757-2426-4_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.