IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4757-2024-2_8.html
   My bibliography  Save this book chapter

Process Metrics and the Ergodic Decomposition

In: Probability, Random Processes, and Ergodic Properties

Author

Listed:
  • Robert M. Gray

    (Stanford University, Department of Electrical Engineering)

Abstract

Given two probability measures, say p and m, on a common probability space, how different or distant from each other are they? Similarly, given two random processes with distributions p and m, how distant are the processes from each other and what impact does such a distance have on their respective ergodic properties? The goal of this final chapter is to develop two quite distinct notions of the distance d(p,m) between measures or processes and to use these ideas to delve further into the ergodic properties of processes and the ergodic decomposition. One metric, the distributional distance, measures how well the probabilities of certain important events match up for the two probability measures, and hence this metric need not have any relation to any underlying metric on the original sample space. In other words, the metric makes sense even when we are not putting probability measures on metric spaces. The second metric, the ρ̄-distance (rho-bar distance) depends very strongly on a metric on the output space of the process and measures distance not by how different probabilities are, but by how well one process can be made to approximate another. The second metric is primarily useful in applications in information theory and statistics.

Suggested Citation

  • Robert M. Gray, 1988. "Process Metrics and the Ergodic Decomposition," Springer Books, in: Probability, Random Processes, and Ergodic Properties, chapter 8, pages 244-283, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4757-2024-2_8
    DOI: 10.1007/978-1-4757-2024-2_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4757-2024-2_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.