Author
Listed:
- John Ting-Yung Wen
(California Institute of Technology, Jet Propulsion Laboratory)
- Mark J. Balas
(Rensselaer Polytechnic Institute, Department of ECSE)
Abstract
Though great advances have been reported in adaptive control of single-input/single-output (SISO) systems and some multi-input/multi-output (MIMO) systems, some precise a priori structural information of the plant (at least the order) is needed for most of the methods proposed. This is unsatisfactory in some applications because of unmodeled dynamics and structure and noisy operating environment. In fact, in many high performance control system designs, as for example the control of large space structures, the distributed nature of the plant must be taken into account. These distributed parameter systems are frequently modeled by partial differential equations. Therefore, they must be analyzed in the appropriate infinite-dimensional state space. A particular approach based on model reference adaptive control (MRAC) with command generator tracker (CGT) concepts, adopts a set of assumptions that are not dependent on the system dimension. The method has been applied successfully to some finite-dimensional systems and shows promise for the infinite-dimensional state space generalizations as well. In this paper, the scheme is modified in order to make the transition of this theory from finite dimensions to the infinite-dimensional Hilbert Space, mathematically rigorous. Four main technical difficulties for such a transition are discussed: coercivity of the solution in the Lyapunov equation, application of the Invariance Principle in infinite dimensions, the strict positive realness condition, and the existence and the uniqueness of solutions. We investigate some of the ramifications and the remedies of these issues. Robustness with respect to state and output perturbations and parameter variations is also discussed to demonstrate the practicality of this controller operating under realistic conditions.
Suggested Citation
John Ting-Yung Wen & Mark J. Balas, 1986.
"Direct Model Reference Adaptive Control in Infinite-Dimensional Hilbert Space,"
Springer Books, in: Kumpati S. Narendra (ed.), Adaptive and Learning Systems, pages 309-326,
Springer.
Handle:
RePEc:spr:sprchp:978-1-4757-1895-9_22
DOI: 10.1007/978-1-4757-1895-9_22
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4757-1895-9_22. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.