IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4757-1895-9_18.html
   My bibliography  Save this book chapter

Knowledge Growth in an Artificial Animal

In: Adaptive and Learning Systems

Author

Listed:
  • Stewart W. Wilson

    (Rowland Institute for Science)

Abstract

This paper describes work using an artificial, behaving, animal model (termed an “ani-mat”) to study intelligence at a primitive level. The motivation for our somewhat unusual approach is the view that the essence of intelligence is exhibited by animals surviving in real environments. Therefore, insight into intelligence should be obtainable from simulated animals and environments, even simple ones, provided the simulations suitably reflect the animal’s survival problems. The starting point for the research is an explicit definition of intelligence which guides model construction. In experiments, a particular animat is placed in an environment and evaluated as to its rates of improvement in performance and perceptual generalization. Learning is central, because we wish to provide the animat with adaptive mechanisms which yield rapid and solid improvement but themselves contain minimal a priori information.

Suggested Citation

  • Stewart W. Wilson, 1986. "Knowledge Growth in an Artificial Animal," Springer Books, in: Kumpati S. Narendra (ed.), Adaptive and Learning Systems, pages 255-264, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4757-1895-9_18
    DOI: 10.1007/978-1-4757-1895-9_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4757-1895-9_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.