IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4684-9316-0_6.html
   My bibliography  Save this book chapter

Subexponential Factoring Algorithms

In: Prime Numbers

Author

Listed:
  • Richard Crandall

    (Center for Advanced Computation)

  • Carl Pomerance

    (Dartmouth University, Department of Mathematics)

Abstract

The methods of this chapter include two of the three basic workhorses of modern factoring, the quadratic sieve (QS) and the number field sieve (NFS). (The third workhorse, the elliptic curve method (ECM), is described in Chapter 7.) The quadratic sieve and number field sieve are direct descendants of the continued fraction factoring method of Brillhart and Morrison, which was the first subexponential factoring algorithm on the scene. The continued fraction factoring method, which was introduced in the early 1970s, allowed complete factorizations of numbers of around 50 digits, when previously, about 20 digits had been the limit. The quadratic sieve and the number field sieve, each with its strengths and domain of excellence, have pushed our capability for complete factorization from 50 digits to now over 150 digits for the size of numbers to be routinely factored. By contrast, the elliptic curve method has allowed the discovery of prime factors up to 50 digits and beyond, with fortunately weak dependence on the size of number to be factored. We include in this chapter a small discussion of rigorous factorization methods that in their own way also represent the state of the art. We also discuss briefly some subexponential discrete logarithm algorithms for the multiplicative groups of finite fields.

Suggested Citation

  • Richard Crandall & Carl Pomerance, 2001. "Subexponential Factoring Algorithms," Springer Books, in: Prime Numbers, chapter 0, pages 227-283, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4684-9316-0_6
    DOI: 10.1007/978-1-4684-9316-0_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4684-9316-0_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.