IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4615-1617-0_1.html
   My bibliography  Save this book chapter

Introduction

In: Many Valued Topology and its Applications

Author

Listed:
  • Ulrich Höhle

    (Bergische Universität, Fachbereich Mathematik)

Abstract

Around the beginning of the 20th century General Topology arises from the effort for establishing a solid basis for Analysis and is intimately related to the success of set theory. Closed sets already appear in the work of G. Cantor; a first axiom system of neighborhoods is presented in D. Hilbert’s famous axio-matization of the plane (cf. pp. 234–235 in [39]); the notion of free ultrafilters is anticipated by F. Riesz by his definition of ideale Verdichtungsstelle (cf. [88]). One of the important contributions of F. HausdorfF consists in the freeing of the neighborhood notion from its restriction to exclusive application to higher dimensional manifolds (cf. [114]). As an illustration of this step we quote from F. Hausdorff's famous book Grundzüge der Mengenlehre (1914) the following passage: Erne Theorie der raumlichen Pimktmengen würde nun, vermöge der zahl-reichen mitspielenden Eigenschaften des gewöhnlichen Raumes, naturlich einen sehr speziellen Charakter tragen, und wenn man sich vornherein auf diesen einzigen Fall festlegen wollte, so würde man für Punktmengen einer Geraden, einer Ebene, einer Kugel usw. jedesmal eine neue Theorie zu eritwickeln haben. Die Erfahrung hat gezeigt, daß man die sen Pleonasmus vermeiden und eine allgemeinerc Thcoric aufstellen kann, die nicht nur die genannten Fälle, sondern auch noch andere Mengen (Riemannsche Flächen, Räume von endlichen und unendlich vielen Dimensionen, Kurven- und Funktionenmengen u.a.) umfafit (cf. pp. 210–211 in [37]).

Suggested Citation

  • Ulrich Höhle, 2001. "Introduction," Springer Books, in: Many Valued Topology and its Applications, pages 5-9, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4615-1617-0_1
    DOI: 10.1007/978-1-4615-1617-0_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4615-1617-0_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.