IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4615-0095-7_6.html
   My bibliography  Save this book chapter

Optimality conditions in control problems within the class of generalized solutions

In: Impulsive Control in Continuous and Discrete-Continuous Systems

Author

Listed:
  • Boris M. Miller

    (Institute for Information Transmission Problems)

  • Evgeny Ya. Rubinovich

    (Institute of Control Sciences)

Abstract

The problem of the optimality conditions derivation is the basic one in optimal control. Well-known necessary optimality conditions in the form of the maximum principle have been obtained at the beginning of 60-ths, and hereafter are widely used in the practice of the optimal control as a powerful tool for the solution of applied problems and development of the optimization algorithms and software. In its typical form the maximum principle reduces the infinitely dimensional optimization problem to some boundary-value problem for the system of differential equations. However, in view of the specific of systems with impulse control, the problem of optimality conditions did not have an adequate solution especially for nonlinear systems. As follows from the results of the above chapters the optimal solutions in systems with impulse control require the special class of equations, namely, the differential equations with measures. Meanwhile, the general methods of the necessary optimality condition derivation, based on the classical Dubovitskii-Milytin scheme [47], [63], can not be directly applied to this class of equations, particularly in the case when the measure itself serves as an additional control component. Indeed, as was shown in the Introduction the “small” variations of measure (or impulse control) might generate the “strong” variations of the paths, thereby the application of the general scheme, based on the linear correspondence between control-paths variation would be inapplicable.

Suggested Citation

  • Boris M. Miller & Evgeny Ya. Rubinovich, 2003. "Optimality conditions in control problems within the class of generalized solutions," Springer Books, in: Impulsive Control in Continuous and Discrete-Continuous Systems, chapter 0, pages 237-324, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4615-0095-7_6
    DOI: 10.1007/978-1-4615-0095-7_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4615-0095-7_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.