IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4614-8594-0_13.html
   My bibliography  Save this book chapter

Analysis of Similarity and Preference Data

In: Statistical Analysis of Management Data

Author

Listed:
  • Hubert Gatignon

    (INSEAD)

Abstract

Similarity data in management research are typically collected in order to understand the underlying dimensions determining perceptions of stimuli such as brands or companies. One advantage of such data is that it is cognitively easier for respondents to provide subjective assessments of the similarity between objects than to rate these objects on a number of attributes that they may not even be aware of. Furthermore, when asking respondents to rate objects on attributes, the selection of the attributes proposed may influence the results while, in fact, it is not clear that these attributes are the relevant ones. In multidimensional scaling, the methodology allows you to infer the structure of perceptions. In particular, the researcher is able to make inferences regarding the number of dimensions that are necessary to fit the similarity data. In this chapter, we first describe the type of data collected to perform multidimensional scaling and we then present metric and nonmetric methods of multidimensional scaling. Multidimensional scaling explains the similarity of objects such as brands. We then turn to the analysis of preference data, where the objective is to model and explain preferences for objects. These explanations are based on the underlying dimensions of preferences that are discovered through the methodology.

Suggested Citation

  • Hubert Gatignon, 2014. "Analysis of Similarity and Preference Data," Springer Books, in: Statistical Analysis of Management Data, edition 3, chapter 0, pages 487-542, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4614-8594-0_13
    DOI: 10.1007/978-1-4614-8594-0_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4614-8594-0_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.