IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4614-7828-7_22.html
   My bibliography  Save this book chapter

Nonstandard Integral Equations for the Harmonic Oscillations of Thin Plates

In: Integral Methods in Science and Engineering

Author

Listed:
  • G. R. Thomson

    (A.C.C.A.)

  • C. Constanda

    (The University of Tulsa)

  • D. R. Doty

    (The University of Tulsa)

Abstract

In [ThCo97] and [ThCo09a] the problems of high frequency harmonic oscillations of thin elastic plates with Dirichlet, Neumann, and Robin boundary conditions were investigated by means of a classical indirect boundary integral equation method. This method was not entirely satisfactory since, for the exterior problems, it produced integral equations with nonunique solutions for certain values of the oscillation frequency, although the actual boundary value problems always had at most one solution. When a direct method was employed (see [ThCo99] and [ThCo10]), it was found that uniqueness could be guaranteed only if a pair of integral equations was derived for each exterior problem. The classical techniques did not seem to offer any answer to the question of whether the solutions could be obtained from single, uniquely solvable equations. Below we propose a modified indirect boundary integral equation method, based on constructing a matrix of fundamental solutions satisfying a dissipative (or Robin-type) condition on a curve interior to the scatterer, which answers the above question in the affirmative.

Suggested Citation

  • G. R. Thomson & C. Constanda & D. R. Doty, 2013. "Nonstandard Integral Equations for the Harmonic Oscillations of Thin Plates," Springer Books, in: Christian Constanda & Bardo E.J. Bodmann & Haroldo F. de Campos Velho (ed.), Integral Methods in Science and Engineering, edition 127, chapter 0, pages 311-328, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4614-7828-7_22
    DOI: 10.1007/978-1-4614-7828-7_22
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4614-7828-7_22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.