IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4614-7828-7_12.html
   My bibliography  Save this book chapter

A Finite Element Formulation of the Total Variation Method for Denoising a Set of Data

In: Integral Methods in Science and Engineering

Author

Listed:
  • P. J. Harris

    (University of Brighton)

  • K. Chen

    (University of Liverpool)

Abstract

The problem of removing the noise from an image can be formulated as the solution of a nonlinear differential equation. In most work, the finite different method is used to approximate the differential equation and a fixed-point method is used to solve the resulting nonlinear algebraic equations. However, the differential equation is such that an alternative system of nonlinear equations can be obtained by using a Galerkin based finite element formulation. The equations which result from the finite element method can be solved using Newton’s method rather than a fixed point method. This paper will consider the Galerkin finite element formulation of this problem and investigate the convergence of Newton’s method for obtaining the solution to the nonlinear system of equations. The methods will be illustrated with a number of typical one- and two-dimensional examples.

Suggested Citation

  • P. J. Harris & K. Chen, 2013. "A Finite Element Formulation of the Total Variation Method for Denoising a Set of Data," Springer Books, in: Christian Constanda & Bardo E.J. Bodmann & Haroldo F. de Campos Velho (ed.), Integral Methods in Science and Engineering, edition 127, chapter 0, pages 175-182, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4614-7828-7_12
    DOI: 10.1007/978-1-4614-7828-7_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4614-7828-7_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.