IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4614-5128-0_13.html
   My bibliography  Save this book chapter

DC Programming Approaches for Distance Geometry Problems

In: Distance Geometry

Author

Listed:
  • Hoai An Le Thi

    (University of Lorraine, Ile du Saulcy, Laboratory of Theoretical and Applied Computer Science (LITA EA 3097) UFR MIM)

  • Tao Pham Dinh

    (National Institute for Applied Sciences, Rouen, Laboratory of Mathematics)

Abstract

In this chapter, a so-called DCA method based on a DC (difference of convex functions) optimization approach for solving large-scale distance geometry problems is developed. Two main problems are considered: the exact and the general distance geometry problems. Different formulations of equivalent DC programs are introduced. Substantial subdifferential calculations permit to compute sequences of iterations in the DCA quite simply and allow exploiting sparsity in the large-scale setting. For improving the computational efficiency of the DCA schemes we investigate several techniques. A two-phase algorithm using shortest paths between all pairs of atoms to generate the complete dissimilarity matrix, a spanning trees procedure, and a smoothing technique are investigated in order to compute a good starting point (SP) for the DCAs. An important issue in the DC optimization approach is well exploited, say the nice effect of DC decompositions of the objective functions. For this purpose we propose several equivalent DC formulations based on the stability of Lagrangian duality and the regularization techniques. Finally, many numerical simulations of the molecular optimization problems with up to 12,567 variables are reported which prove the practical usefulness of the nonstandard nonsmooth reformulations, the globality of found solutions, the robustness, and the efficiency of our algorithms.

Suggested Citation

  • Hoai An Le Thi & Tao Pham Dinh, 2013. "DC Programming Approaches for Distance Geometry Problems," Springer Books, in: Antonio Mucherino & Carlile Lavor & Leo Liberti & Nelson Maculan (ed.), Distance Geometry, edition 127, chapter 0, pages 225-290, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4614-5128-0_13
    DOI: 10.1007/978-1-4614-5128-0_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4614-5128-0_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.